Skip to main content
Log in

High-resolution velocity structure and seismogenic potential of strong earthquakes in the Bamei-Kangding segment of the Xianshuihe fault zone

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

On September 5, 2022, a strong MS6.8 earthquake struck the Luding area in the Kangding-Moxi segment of the Xianshuihe fault zone, which is the northern boundary of the Sichuan-Yunnan rhombic block, causing considerable casualties. The Bamei-Kangding segment of the Xianshuihe fault zone, which is located only tens of kilometers away from the Luding earthquake, has hosted frequent moderate to strong earthquakes in history and is a dangerous earthquake-prone zone. Therefore, it is critical to investigate the regional seismogenic environment for strong earthquakes and to evaluate the impact of the Luding earthquake in this area. For this purpose, we deployed a dense seismic array comprising over 200 short-period nodes in this region from July to August, 2022 and acquired seismic ambient noise for over 30 days. Using the collected data, we conducted surface wave tomography and obtained a high-resolution 3-D shear wave velocity model for the regional shallow crust down to 8 km in depth. The key findings include: (1) the Bamei-Kangding segment of the Xianshuihe fault zone exhibits widespread stripped low-velocity anomalies, suggesting shear movements at a relatively high temperature of the Xianshuihe fault zone; the Zheduoshan granitic pluton situated between the Zheduotang and southern Selaha faults shows a distinct low-velocity anomaly, which may be attributed to the localized high-temperature anomaly resulted by a deep magmatic heat source and the recent rapid uplift of the Zheduoshan area; (2) a ten-kilometer-wide high velocity body found below 4 km in depth near the Zhonggu area in the Bamei segment coincides with the seismic gap of moderate to strong earthquakes in this region, suggesting that the high velocity body may act as a seismic barrier; (3) the heterogeneity of the velocity structure along the Bamei-Kangding segment of the Xianshuihe fault zone corresponds to the regional changes in temperature, which reveals the reason for the spatially varying seismogenic potential in this segment; especially, the Selaha and Zheduotang faults which are located along the boundaries between the high and low velocity anomalies may possess considerable seismogenic potential; (4) the Coulomb failure stress calculations indicate that the Luding earthquake has imposed nontrivial stress loading in the Bamei-Kangding segment, and may shorten the earthquake recurrence intervals of the southern Selaha fault, the Zheduotang fault, and the Xuemenkan segment of the Xianshuihe fault zone. Thus, the Luding earthquake may potentially pose threats to the Sichuan-Xizang railway passing through this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen C R, Luo Z L, Qian H, Wen X Z, Zhou H W, Huang W S. 1991. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. GSA Bull, 103: 1178–1199

    Google Scholar 

  • An Y R, Wang D, Ma Q, Xu Y R, Li Y, Zhang Y Y, Liu Z M, Huang C M, Su J R, Li J L, Li M X, Chen W K, Wan Z F, Kang D J, Wang B S. 2023. Preliminary report of the September 5, 2022 MS6.8 Luding earthquake, Sichuan, China. Earthquake Res Adv, 3: 100184

    Google Scholar 

  • Bai M K, Chevalier M, Leloup P H, Li H B, Pan J W, Replumaz A, Wang S G, Li K Y, Wu Q, Liu F C, Zhang J J. 2021. Spatial slip rate distribution along the SE Xianshuihe Fault, eastern Tibet, and earthquake hazard assessment. Tectonics, 40: e2021TC006985

    Google Scholar 

  • Bai M K, Chevalier M L, Pan J W, Replumaz A, Leloup P H, Métois M, Li H B. 2018. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth Planet Sci Lett, 485: 19–31

    Google Scholar 

  • Bennington N L, Zhang H, Thurber C H J, Bedrosian P A. 2015. Joint inversion of seismic and magnetotelluric data in the Parkfield Region of California using the normalized cross-gradient constraint. Pure Appl Geophys, 172: 1033–1052

    Google Scholar 

  • Bensen G D, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M, Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys J Int, 169: 1239–1260

    Google Scholar 

  • Burchfiel B C and Chen Z L. 2012. Tectonics of the southeastern Tibetan Plateau and its adjacent foreland. 210, Geological Society of America

  • Cammarano F, Goes S, Vacher P, Giardini D. 2003. Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Inter, 138: 197–222

    Google Scholar 

  • Catchings R D, Rymer M J, Goldman M R, Hole J A, Huggins R, Lippus C. 2002. High-resolution seismic velocities and shallow structure of the San Andreas fault zone at Middle Mountain, Parkfield, California. Bull Seismol Soc Am, 92: 2493–2503

    Google Scholar 

  • Chen G F, bartholomew M, Liu D M, Cao K, Feng M X, Wang D. 2022. Paleo-earthquakes along the Zheduotang Fault, Xianshuihe Fault System, eastern Tibet: Implications for seismic hazard evaluation. J Earth Sci, 33: 1233–1245

    Google Scholar 

  • Chen G H, Xu X W, Wen X Z, Chen Y G. 2016. Late Quaternary slip-rates and slip partitioning on the southeastern Xianshuihe Fault System, eastern Tibetan Plateau. Acta Geol Sin-Engl Ed, 90: 537–554

    Google Scholar 

  • Chen W, Zhang Y, Zhang Y Q, Jin G S, Wang Q L. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan Plateau—Evidence from Ar−Ar thermochronology (in Chinese). Acta Petrol Sin, 22: 867–872

    Google Scholar 

  • Cheng J, Xu X W. 2018. Features of earthquake clustering from calculation of Coulomb stress around the Bayan Har block, Tibetan Plateau (in Chinese). Seismol Geol, 40: 133–154

    Google Scholar 

  • Cheng Y Z, Pang Z H, Kong Y L, Chen X B, Wang G J. 2022. Imaging the heat source of the Kangding high-temperature geothermal system on the Xianshuihe fault by magnetotelluric survey. Geothermics, 102: 102386

    Google Scholar 

  • Cook K L, Hovius N, Wittmann H, Heimsath A M, Lee Y H. 2018. Causes of rapid uplift and exceptional topography of Gongga Shan on the eastern margin of the Tibetan Plateau. Earth Planet Sci Lett, 481: 328–337

    Google Scholar 

  • Daub E G, Shelly D R, Guyer R A, Johnson P A. 2011. Brittle and ductile friction and the physics of tectonic tremor. Geophys Res Lett, 38: L10301

    Google Scholar 

  • Dorbath C, Oppenheimer D, Amelung F, King G. 1996. Seismic tomography and deformation modeling of the junction of the San Andreas and Calaveras faults. J Geophys Res, 101: 27917–27941

    Google Scholar 

  • Ehlers T A, Farley K A. 2003. Apatite (U−Th)/He thermochronometry: Methods and applications to problems in tectonic and surface processes. Earth Planet Sci Lett, 206: 1–14

    Google Scholar 

  • Fang H J, Yao H J, Zhang H J, Huang Y C, van der Hilst R D. 2015. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: Methodology and application. Geophys J Int, 201: 1251–1263

    Google Scholar 

  • Feng J K, Yao H J, Chen L, Wang W T. 2022. Massive lithospheric delamination in southeastern Tibet facilitating continental extrusion. Natl Sci Rev, 9: Nwab174

    Google Scholar 

  • Gan W J, Zhang P Z, Shen Z K, Niu Z J, Wang M, Wan Y G, Zhou D M, Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J Geophys Res, 112: B08416

    Google Scholar 

  • Goes S, Govers R, Vacher P. 2000. Shallow mantle temperatures under Europe from P and S wave tomography. J Geophys Res, 105: 11153–11169

    Google Scholar 

  • Guo Q, Pang Z H, Wang Y C, Tian J. 2017. Fluid geochemistry and geothermometry applications of the Kangding high-temperature geothermal system in eastern Himalayas. Appl Geochem, 81: 63–75

    Google Scholar 

  • Hao M, Wang Q L, Shen Z K, Cui D X, Ji L Y, Li Y H, Qin S L. 2014. Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 632: 281–292

    Google Scholar 

  • Harris R A. 1998. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J Geophys Res, 103: 24347–24358

    Google Scholar 

  • Hirschmann M M. 2010. Partial melt in the oceanic low velocity zone. Phys Earth Planet Inter, 179: 60–71

    Google Scholar 

  • Hu S, He L, Wang J. 2000. Heat flow in the continental area of China: A new data set. Earth Planet Sci Lett, 179: 407–419

    Google Scholar 

  • Jiang G Y, Wen Y M, Liu Y J, Xu X W, Fang L H, Chen G H, Gong M, Xu C J. 2015. Joint analysis of the 2014 Kangding, southwest China, earthquake sequence with seismicity relocation and InSAR inversion. Geophys Res Lett, 42: 3273–3281

    Google Scholar 

  • Johnson K M, Fukuda J, Segall P. 2012. Challenging the rate-state asperity model: Afterslip following the 2011 M9 Tohoku-oki, Japan, earthquake. Geophys Res Lett, 39: 2012GL052901

    Google Scholar 

  • Kang D J, Chen W K, Zhao H Q, Wang D. 2022. Rapid assessment of the September 5, 2022 M6.8 Luding earthquake in Sichuan, China. Earthqu Res Adv, 3: 100214

    Google Scholar 

  • King G C, Stein R S, Lin J. 1994. Static stress changes and the triggering of earthquakes. Bull Seismol Soc Amer, 84: 935–953

    Google Scholar 

  • Lai Q Z, Ding L, Wang H W, Yue Y H, Cai F L. 2007. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology. Sci China Ser D-Earth Sci, 50: 172–183

    Google Scholar 

  • Laske G, Masters G, Ma Z, Pasyanos M. 2013. Update on CRUST1.0 - A 1-degree Global Model of Earth’s Crust. Geophys Res Abstract, 15: 2658

    Google Scholar 

  • Lei X L. 2003. How do asperities fracture? An experimental study of unbroken asperities. Earth Planet Sci Lett, 213: 347–359

    Google Scholar 

  • Li C Y, Wang X C, He C Z, Wu X, Kong Z Y, Li X L. 2019. National 1: 200 000 Digital geological map (public version) spatial database (in Chinese). Geol China, 46: 1–10

    Google Scholar 

  • Li H L, Zhang Y Q, Zhang C H, Dong S W, Zhu F S. 2015. Middle Jurassic syn-kinematic magmatism, anatexis and metamorphism in the Zheduo-Gonggar massif, implication for the deformation of the Xianshuihe fault zone, East Tibet. J Asian Earth Sci, 107: 35–52

    Google Scholar 

  • Li H L, Zhang Y Q, Zhang C H, Wang J C. 2016. Zircon U−Pb study of two-staged Oligo-Miocene migmatization along the Xianshuihe fault zone, East Tibet Plateau (in Chinese). Earth Sci Front, 23: 222–237

    Google Scholar 

  • Li H L, Zhang Y Q. 2013. Zircon U−Pb geochronology of the Konggar granitoid and migmatite: Constraints on the Oligo-Miocene tectonothermal evolution of the Xianshuihe fault zone, East Tibet. Tectonophysics, 606: 127–139

    Google Scholar 

  • Li Y, Cui Y F, Li Z H, Fu X D. 2022. Evolution of glacier debris flow and its monitoring system along Sichuan-Tibet traffic corridor (in Chinese). Earth Sci, 47: 1969–1984

    Google Scholar 

  • Li Z W, Tian B F, Liu S, Yang J S. 2013. Asperity of the 2013 Lushan earthquake in the eastern margin of Tibetan Plateau from seismic tomography and aftershock relocation. Geophys J Int, 195: 2016–2022

    Google Scholar 

  • Liang M J. 2019. Characteristics of the Late-Quaternary fault activity of the Xianshuihe Fault (in Chinese). Dissertation for Doctoral Degree. Beijing: Institute of Geology China Earthquake Administration

    Google Scholar 

  • Lin J, Stein R S. 2004. Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res, 109: B02303

    Google Scholar 

  • Liu Q Q, Shi Y A, Wei D P, Han P, Chen S Y, Liu P X, Liu L Q. 2017. Near-surface geothermal gradient observation and geothermal analyses in the Xianshuihe fault zone, eastern Tibetan Plateau. Acta Geol Sin-Engl Ed, 91: 414–428

    Google Scholar 

  • Liu Q Y, van der Hilst R D, Li Y, Yao H J, Chen J H, Guo B, Qi S H, Wang J, Huang H, Li S C. 2014. Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat Geosci, 7: 361–365

    Google Scholar 

  • Liu Q, Zhang B, Zhao B, Zhong Y, Lu X Y, Zhou J M. 2022. Stability of the Hailuogou glacier during the “9.5” Luding Earthquake: A preliminary assessment based on multi-source observations. J Mt Sci, 19: 3037–3050

    Google Scholar 

  • Liu S W, Wang Z Q, Yan Q R, Li Q G, Zhang D H, Wang J G. 2006. Timing, petrogenesis and geodynamic significance of Zheduoshan Granitoids (in Chinese). Acta Petrol Sin, 22: 343–352

    Google Scholar 

  • Liu Y, Yao H H J, Zhang H J, Fang H J. 2021. The community velocity model V. 1.0 of southwest China, constructed from joint body-and surface-wave travel-time tomography. Seismol Res Lett, 92: 2972–2987

    Google Scholar 

  • Liu Y, Yu Z Y, Zhang Z Q, Yao H J, Wang W T, Zhang H J, Fang H J, Fang L H. 2023. The high-resolution community velocity model V2.0 of southwest China, constructed by joint body and surface wave tomography of data recorded at temporary dense arrays. Sci China Earth Sci, https://doi.org/10.1007/s11430-022-1161-7

  • Long F, Wen X Z, Ruan X, Zhao M, Yi G X. 2015. A more accurate relocation of the 2013 Ms7.0 Lushan, Sichuan, China, earthquake sequence, and the seismogenic structure analysis. J Seismol, 19: 653–665

    Google Scholar 

  • Luo S, Yao H, Li Q, Wang W, Wan K, Meng Y, Liu B. 2019. High-resolution 3D crustal S-wave velocity structure of the Middle-Lower Yangtze River Metallogenic Belt and implications for its deep geodynamic setting. Sci China Earth Sci, 62: 1361–1378

    Google Scholar 

  • Malin P, Shalev E, Balven H, Lewis-Kenedi C. 2006. Structure of the San Andreas Fault at SAFOD from P-wave tomography and fault-guided wave mapping. Geophys Res Lett, 33: L13314

    Google Scholar 

  • McKenzie D, Brune J N. 1972. Melting on fault planes during large earthquakes. Geophys J Interl, 29: 65–78

    Google Scholar 

  • Nadeau R M, McEvilly T V. 1999. Fault slip rates at depth from recurrence intervals of repeating microearthquakes. Science, 285: 718–721

    Google Scholar 

  • Pan J W, Li H B, Chevalier M L, Bai M K, Liu F C, Liu D L, Zheng Y, Lu H J, Zhao Z B. 2020. A newly discovered active fault in the Selaha Kangding section of the Xianshuihe fault zone: The Mugecuonan fault (in Chinese). Acta Geol Sin, 94: 3178–3188

    Google Scholar 

  • Papadimitriou E, Wen X Z, Karakostas V, Jin X S. 2004. Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China. Pure Appl Geophys, 161: 1683–1707

    Google Scholar 

  • Papaleo E, Cornwell D G, Rawlinson N. 2017. Seismic tomography of the North Anatolian Fault: New insights into structural heterogeneity along a continental strike-slip fault. Geophys Res Lett, 44: 2186–2193

    Google Scholar 

  • Papaleo E, Cornwell D, Rawlinson N. 2018. Constraints on north Anatolian Fault zone width in the crust and upper mantle from S wave teleseismic tomography. J Geophys Res-Solid Earth, 123: 2908–2922

    Google Scholar 

  • Parsons T, Segou M, Sevilgen V, Milner K, Field E, Toda S, Stein R S. 2014. Stress-based aftershock forecasts made within 24 h postmain shock: Expected north San Francisco Bay area seismicity changes after the 2014 M = 6.0 West Napa earthquake. Geophys Res Lett, 41: 8792–8799

    Google Scholar 

  • Parsons T, Stein R S, Simpson R W, Reasenberg P A. 1999. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults. J Geophys Res, 104: 20183–20202

    Google Scholar 

  • Pei S P, Zhang H J, Su J R, Cui Z X. 2014. Ductile gap between the Wenchuan and Lushan earthquakes revealed from the two-dimensional Pg seismic tomography. Sci Rep, 4: 6489

    Google Scholar 

  • Qu Z, Zhu B J, Cao Y T, Fu H R. 2022. Rapid report of seismic damage to buildings in the 2022 M 6.8 Luding earthquake, China. Earthqu Res Adv, 3: 100180

    Google Scholar 

  • Rawlinson N, Sambridge M. 2005. The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Explor Geophys, 36: 341–350

    Google Scholar 

  • Roger F, Calassou S, Lancelot J, Malavieille J, Mattauer M, Xu Z Q, Hao Z W, Hou L W. 1995. Miocene emplacement and deformation of the Konga Shan granite (Xianshui He fault zone, west Sichuan, China): Geodynamic implications. Earth Planet Sci Lett, 130: 201–216

    Google Scholar 

  • Scholz C H. 1988. The brittle-plastic transition and the depth of seismic faulting. Geol Rundsch, 77: 319–328

    Google Scholar 

  • Selway K, O’Donnell J P. 2019. A small, unextractable melt fraction as the cause for the low velocity zone. Earth Planet Sci Lett, 517: 117–124

    Google Scholar 

  • Shao Z G, Xu J, Ma H S, Zhang L P. 2016. Coulomb stress evolution over the past 200 years and seismic hazard along the Xianshuihe fault zone of Sichuan, China. Tectonophysics, 670: 48–65

    Google Scholar 

  • Shapiro N M, Campillo M, Stehly L, Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307: 1615–1618

    Google Scholar 

  • Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophys Res Lett, 31: L07614

    Google Scholar 

  • Shen W S, Ritzwoller M H, Kang D, Kim Y H, Lin F C, Ning J Y, Wang W T, Zheng Y, Zhou L Q. 2016. A seismic reference model for the crust and uppermost mantle beneath China from surface wave dispersion. Geophys J Int, 206: 954–979

    Google Scholar 

  • Sibson R H. 1977. Fault rocks and fault mechanisms. JGS, 133: 191–213

    Google Scholar 

  • Smith-Konter B, Sandwell D. 2009. Stress evolution of the San Andreas fault system: Recurrence interval versus locking depth. Geophys Res Lett, 36: L13304

    Google Scholar 

  • Stein R S. 1999. The role of stress transfer in earthquake occurrence. Nature, 402: 605–609

    Google Scholar 

  • Sumy D F, Cochran E S, Keranen K M, Wei M, Abers G A. 2014. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. J Geophys Res-Solid Earth, 119: 1904–1923

    Google Scholar 

  • Sun J, Jin G W, Bai D H, Wang L F. 2003. Sounding of electrical structure of the crust and upper mantle along the eastern border of Qinghai-Tibet Plateau and its tectonic significance (in Chinese). Sci China Ser D-Earth Sci, 46: 243–253

    Google Scholar 

  • Sun L J, Zhao Z B, Pan J W, Liang F H, Zhang L, Zhang J J. 2021. The stress and strain state of Yalahe fault in the Kangding segment of the Xianshuihe fault zone and its seismogenic environment (in Chinese). Acta Petrol Sin, 37: 3225–3240

    Google Scholar 

  • Sun Q, Pei S P, Cui Z, X C Y J, Liu Y B, Xue X T, Li J W, Li L, Zuo H. 2021. Structure-controlled asperities of the 1920 Haiyuan M8.5 and 1927 Gulang M8 earthquakes, NE Tibet, China, revealed by high-resolution seismic tomography. Sci Rep, 11: 5090

    Google Scholar 

  • Tan X B, Xu X W, Li Y X, Chen G H, Wan J L. 2010. Deep stress-strain state and seismogenic environment of the Yalahe fault in the Kangding section of the Xianshuihe fault zone (in Chinese). Chin J Geophys, 53: 1859–1867

    Google Scholar 

  • Tang X C, Zhang J, Pang Z H, Hu S B, Wu Y, Bao S J. 2017. Distribution and genesis of the eastern Tibetan Plateau geothermal belt, western China. Environ Earth Sci, 76: 31

    Google Scholar 

  • Tang Y, Wang P, Deng H, Liu Y P, Tang W Q. 2022. Petrological records of major tectono-magmatic events since Oligocene in the southeastern segment of Xianshuihe fault zone in the eastern margin of Tibetan Plateau (in Chinese). Geol Bull China, 41: 1121–1143

    Google Scholar 

  • Tang Y. 2021. Deformation mechanism and physical-chemical properties during seismic process along the Xianshuihe fault zone (in Chinese). Dissertation for Doctoral Degree. Beijing: Chinese Academy of Geological Science

    Google Scholar 

  • Toda S, Stein R S, Richards-Dinger K, Bozkurt S B. 2005. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J Geophys Res, 110: B05S16

    Google Scholar 

  • Toda S, Stein R S, Sevilgen V, Lin J. 2011. Coulomb 3.3 Graphic-rich deformation and stress-change software for earthquake, tectonic, and volcano research and teaching—User guide. US Geological Survey Open-file Report, 1060: 63

    Google Scholar 

  • Wang E, Burchfiel B C. 2000. Late Cenozoic to Holocene deformation in southwestern Sichuan and adjacent Yunnan, China, and its role in formation of the southeastern part of the Tibetan Plateau. GSA Bull, 112: 413–423

    Google Scholar 

  • Wang H, Liu J, Shi Y L, Zhang H, Zhang G M. 2008. Dynamic simulation of interactions between major earthquakes on the Xianshuihe fault zone. Sci China Ser D-Earth Sci, 51: 1388–1400

    Google Scholar 

  • Wang H, Ran Y K, Chen L C, Shi X, Liu R C, Gomez F. 2010. Determination of horizontal shortening and amount of reverse-faulting from trenching across the surface rupture of the 2008 MW7.9 Wenchuan earthquake, China. Tectonophysics, 491: 10–20

    Google Scholar 

  • Wang Z X, Xu Z Q, Yang T N, Hao M Y. 1996. A Study on the deformation mechanism of the Xianshuihe fault zone in Western Sichuan: A shallow level high temperature ductile translational shear zone (in Chinese). Geol China, 1996: 54–61

    Google Scholar 

  • Wang Z, Su J R, Liu C X, Cai X L. 2015. New insights into the generation of the 2013 Lushan Earthquake (Ms7.0), China. J Geophys Res-Solid Earth, 120: 3507–3526

    Google Scholar 

  • Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Amer, 84: 974–1002

    Google Scholar 

  • Wen X Z, Fan J, Yi G X, Deng Y W, Long F. 2008a. A seismic gap on the Anninghe fault in western Sichuan, China. Sci China Ser D-Earth Sci, 51: 1375–1387

    Google Scholar 

  • Wen X, Ma S, Xu X, He Y. 2008b. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Phys Earth Planet Inter, 168: 16–36

    Google Scholar 

  • Wu C Q, Daub E G. 2017. Modeling low-frequency earthquake recurrence patterns. Geophys Res Lett, 44: 10,970–10,976

    Google Scholar 

  • Xie Y Q, Kato N. 2017. Fracture energies at the rupture nucleation points of large strike-slip earthquakes on the Xianshuihe fault, southwestern China. J Asian Earth Sci, 134: 55–62

    Google Scholar 

  • Xu J, Liu J, Yuan Z D, Yao W Q, Zhang J Y, Ji L Y, Shao Z G, Han L F, Wang Z J. 2022. Airborne LiDAR-based mapping of surface ruptures and coseismic slip of the 1955 Zheduotang earthquake on the Xianshuihe Fault, east Tibet. Bull Seismol Soc Am, 112: 3102–3120

    Google Scholar 

  • Xu J, Shao Z G, Liu J, Ji L Y. 2019. Coulomb stress evolution and future earthquake probability along the eastern boundary of the Sichuan-Yunnan block (in Chinese). Chin J Phys, 62: 4189–4213

    Google Scholar 

  • Xu J, Wang K D, Li J L, Gu N, Ding N, Qian J W, Yang W, Zhang H J. 2021. High resolution tomography of the Tanlu fault zone near Hefei with passive seismic and magnetotelluric linear array data. Earthqu Sci, 34: 24–35

    Google Scholar 

  • Xu L L, Rondenay S, van der Hilst R D. 2007. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions. Phys Earth Planet Inter, 165: 176–193

    Google Scholar 

  • Xu X W, Wen X Z, Zheng R Z, Ma W T, Song F M, Yu G H. 2003. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China (in Chinese). Sci China Ser D-Earth Sci, 33 (suppl): 151–162

    Google Scholar 

  • Xu Z Q. 1992. Mountain-building process of the Songpan-Ganzi orogenic belt, China (in Chinese). Beijing: Geological Publishing House

    Google Scholar 

  • Xu Z Q, Li H Q, Hou L W, Fu X F, Chen W, Zeng L S, Cai Z H, Chen F Y. 2007. Uplift of the Longmen-Jinping orogenic belt along the eastern margin of the Qinghai—Tibet Plateau: Large-scale detachment faulting and extrusion mechanism (in Chinese). Geol Bull China, 26:1262–1276

    Google Scholar 

  • Yan B, Lin A. 2017. Holocene activity and paleoseismicity of the Selaha Fault, southeastern segment of the strike-slip Xianshuihe fault zone, Tibetan Plateau. Tectonophysics, 694: 302–318

    Google Scholar 

  • Yan B, Jia D, Lin A M. 2018. Late Pleistocene-Holocene tectonic landforms developed along the strike-slip Xianshuihe Fault Zone, Tibetan Plateau, China. J Geodyn, 120: 11–22

    Google Scholar 

  • Yang H F, Duan Y H, Song J H, Jiang X H, Tian X F, Yang W, Wang W T, Yang J. 2020. Fine structure of the Chenghai fault zone, Yunnan, China, constrained from teleseismic travel time and ambient noise tomography. J Geophys Res-Solid Earth, 125: e2020JB019565

    Google Scholar 

  • Yang H F, Liu Y J, Lin J. 2012. Effects of subducted seamounts on megathrust earthquake nucleation and rupture propagation. Geophys Res Lett, 39: 2012GL053892

    Google Scholar 

  • Yang H F, Wang D, Guo R M, Xie M Y, Zang Y, Wang Y, Yao Q, Cheng C, An Y R, Zhang Y Y. 2022. Rapid report of the 8 January 2022 MS6.9 Menyuan earthquake, Qinghai, China. Earthquake Res Adv, 2: 100113

    Google Scholar 

  • Yang H F. 2015. Recent advances in imaging crustal fault zones: A review. Earthq Sci, 28: 151–162

    Google Scholar 

  • Yang S B, Zhang H J, Gu N, Gao J, Xu J, Jin J Q, Li J J, Yao H J. 2022. Automatically extracting surface-wave group and phase velocity dispersion curves from dispersion spectrograms using a convolutional neural network. Seismol Res Lett, 93: 1549–1563

    Google Scholar 

  • Yang Z G, Dai D Q, Zhang Y, Zhang X M, Liu J. 2022. Rupture process and aftershock mechanisms of the 2022 Luding M6.8 earthquake in Sichuan, China. Earthq Sci, 35: 1–2

    Google Scholar 

  • Yao H. 2020. Building the community velocity model in the Sichuan-Yunnan region, China: Strategies and progresses. Sci China Earth Sci, 63: 1425–1428

    Google Scholar 

  • Yao H, van der Hilst R D, de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis—I. Phase velocity maps. Geophys J Int, 166: 732–744

    Google Scholar 

  • Yasuhara H, Marone C, Elsworth D. 2005. Fault zone restrengthening and frictional healing: The role of pressure solution. J Geophys Res, 110: B06310

    Google Scholar 

  • Yi G X, Fan J. 2005. Study on faulting behavior and fault-segments for potential strong earthquake risk along the central-southern segment of Xianshuihe fault zone based on current seismicity (in Chinese). Earthquake, 25: 58–66

    Google Scholar 

  • Yi G X, Long F, Liang M J, Zhao M, Zhang H P, Zhou R J, Li Y, Liu H, Wu P, Wang S W, Li J, Wu W W, Su J R. 2023. Seismogenic structure of the 5 September 2022 Sichuan Luding MS6.8 earthquake sequence (in Chinese). Chin J Geophys, 66: 1363–1384

    Google Scholar 

  • Yu H Y, Liu Y J, Yang H F, Ning J Y. 2018. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry. Tectonophysics, 733: 73–84

    Google Scholar 

  • Zeng D. 2018. Investigation of Paleoearthquakes and Prediction of Strong Earthquake Risk on the Selaha Segment of Xianshuihe Fault (in Chinese). Dissertation for Master’s Degree. Beijing: Institute of Geology China Earthquake Administration

    Google Scholar 

  • Zhang P Z, Deng Q D, Zhang G M, Ma J, Gan W J, Min W, Mao F Y, Wang Q. 2003. Strong earthquake activity and active blocks in China mainland (in Chinese). Sci China Ser D-Earth Sci, 33: 12–20

    Google Scholar 

  • Zhang P Z. 2013. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics, 584: 7–22

    Google Scholar 

  • Zhang Y, Chen W, Yang N. 2004. 40Ar/39Ar dating of shear deformation of the Xianshuihe fault zone in west Sichuan and its tectonic significance. Sci China Ser D-Earth Sci, 47: 794–803

    Google Scholar 

  • Zhang Y Y, Yao H J, Yang H Y, Cai H T, Fang H J, Xu J J, Jin X, Kuo-Chen H, Liang W T, Chen K X. 2018. 3-D crustal shear-wave velocity structure of the Taiwan Strait and Fujian, SE China, revealed by ambient noise tomography. J Geophys Res-Solid Earth, 123: 8016–8031

    Google Scholar 

  • Zhou R J, He Y L, Huang Z Z, Li X G, Yang T. 2001. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment of the Xianshuihe fault zone. Acta Seismol Sin, 14: 263–273

    Google Scholar 

Download references

Acknowledgements

We would like to thank Guixi YI from the Sichuan Earthquake Administration for her assistance in the fieldwork and deployment of the dense seismic array, and Weiwei WU for providing indispensable support in the array deployment. We are also grateful to Feng LONG for providing the locations of some historical earthquakes in the region. This work was supported by the National Key Research and Development Project of China (Grant No. 2021YFC3000602) and the Special Fund of Key Laboratory of Earthquake Prediction, CEA (Grant No. 2021IEF0103).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junlun Li or Huajian Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Li, J., Xu, J. et al. High-resolution velocity structure and seismogenic potential of strong earthquakes in the Bamei-Kangding segment of the Xianshuihe fault zone. Sci. China Earth Sci. 66, 1960–1978 (2023). https://doi.org/10.1007/s11430-022-1133-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1133-y

Keywords

Navigation